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ABSTRACT 
The use of multiple Kalman filters in connection is proposed: the first Kalman filter uses actual 
measurements in order to provide estimationand the other Kalman filters use estimation of the previous 
Kalman filter in order to provide estimation. It seems that the use of two Kalman filters always improves 
the estimation. The estimationmay improve as the number of Kalman filters increases.  
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1. INTRODUCTION 
Estimation plays an important role in many fields of science: applications to aerospace industry, 
chemical process, communication systems design, control, civil engineering, filtering noise 
from2-dimensional images, pollution prediction and power systems are mentioned in [1]. Linear 
estimation is associated with the following time varying system [1], which consists of the 
dynamic and the statistical model.  

The dynamic model expresses the relationship between state and the measurement and is 
described by the following state space equations: 
 
xሺk+1ሻ=Fሺk+1,kሻxሺkሻ+w(k)    (1) 

zሺkሻ=Hሺkሻxሺkሻ+v(k)     (2) 

 
where x(k) is the nx1 state vector, z(k) is the mx1  measurement vector, F(k+1, k) is the nxn 
transition matrix, H(k) is the mxn output matrix, w(k) is the nx1 state noise and v(k) is the 
mx1measurement noise at time k≥0.  

The statistical model expresses the nature of state and measurements. The basic underlying 
assumption is that the state noise, w(k), and the measurement noise, v(k), follow the white noise 
distribution:{w(k)} is a zero mean Gaussian process with known covariance Q(k) of dimension 
nxn and {v(k)} is a zero mean Gaussian process with known covariance R(k) of dimension 
mxm. 

The following assumptions also hold: (a) the initial value of the state x(0) is a Gaussian random 
variable with mean x0 and covariance P0, (b) the noise stochastic processes and the random 
variable x(0) are independent. 

The filtering/estimation problem is to produce an estimate (estimation/prediction) at time L of 
the state vector using measurements till time L. The above is the base for computing the 
estimation value x(k/k) of the state vector and the corresponding estimation error covariance 
matrix P(k/k) as well as the prediction value x(k+1/k) of the state vector and the corresponding 
prediction error covariance matrix P(k+1/k).  
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The discrete time Kalman filter in [1]-[3] is the most well-known algorithm that solves the 
filtering problem.Kalman filter is optimal [1]. Kalman filter has been widely used in 
variousapplications: Kalman has been used for more accurate estimates of processes affected by 
temperature fluctuations, such as the power generated by gas turbines [4], the SOC in batteries 
used for electricity storage [5], or monitoring the temperature profiles inside the heat exchangers 
serving an ORC unit [6]. A Kalman filter is proposed for the correction of maximum and 
minimum near surface (2m) temperature forecasts obtained by a Numerical Weather Prediction 
(NWP) model in [7]. Regional weather forecasts are derived implementing non-linear 
polynomial functions for different order polynomials using Kalman filters in [8]. Ambient air 
temperature predictions for “sub-grid” locations are extracted in [9] using Kalman filters. Local 
terrain topography is used for the adoption of the Kalman Filter technique in [10]. Kalman 
filtering has been implemented to estimate the electrical load in [11]-[14]. Kalman filter has 
been used for Global Systems for Mobile (GSM) position tracking in two dimensions [15]. 
Kalman filter has been used in [16] where the GSM position tracking was derived using models 
that describe the movement in x-axis and y-axis simultaneously or separately. Also, Mobile 
Position Tracking in three dimensions using Kalman and Lainiotis filters is presented in [17]. 
Kalman filter has been used in [18] to obtain level information of tanks available on land and 
sea vehicles, where one of the biggest problems in measuring the level of tanks is waving and 
sloshing due to movement. Kalman filter has been designed for estimating the level of a 
cylindrical tank and thus removing noise from the level sensor [19]. Kalman filter has been 
implemented to ensure the robustness and reliability of the obtained measurements, due to 
extreme outdoor working conditions in an oil tanker [20]. Kalman filter has been used for tank 
level estimation and prediction in [21]-[22].Kalman filter has been used in tracking the 
Direction of Arrival (DOA) of a moving source [23]. Kalman filter has been used in motion 
detection and tracking system for video surveillance [24]. 

The significance of Kalman filter is undoubtable. This paper deals with the use of multiple 
Kalman filters in connection. Section 2 summarizes the discrete time Kalman filter algorithms. 
The proposed estimation algorithm based on the connection of Kalman filters is presented in 
Section 3. The novelty of the paper concerns the use of Kalman filters in connection in such a 
way to filter the filtered data. The first Kalman filter uses actual measurements in order to 
provide estimation and the other Kalman filters use estimation of the previous Kalman filter in 
order to provide estimation. Each filter uses the same parameters and is optimal. In Section 4 
simulation results are presented. Finally, Section 5 summarizes the conclusions. 

2. KALMAN FILTER 
In this section the linear discrete time Kalman filter is summarized for time varying as well for 
time invariant systems. 

2.1 Time Varying Kalman Filter  

For time varying systems, the Time Varying Kalman Filter (TVKF) is derived: 

Time Varying Kalman Filter (TVKF) 

Kሺkሻ=P(k/k–1)HT(k)ൣHሺkሻP൫k/k–1൯HTሺkሻ+R(k)൧
-1

   (3) 

xሺk/kሻ=ൣI–KሺkሻHሺkሻ൧x(k/k–1)+K(k)z(k)    (4) 

Pሺk/kሻ=ൣI–KሺkሻHሺkሻ൧P(k/k–1)                  (5) 

xሺk+1/kሻ=F(k+1,k)x(k/k)    (6)  

Pሺk+1/kሻ=Qሺkሻ+F(k+1,k)Pሺk/kሻFTሺk+1,kሻ    (7) 
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for k=0, 1, … , with initial conditions x(0/–1)=x0, P(0/–1)=P0. 

K(k) is the Kalman filter gain. I denotes the identity matrix. MT denotes the transpose of matrix 
M. Note that the existence of the inverse of the matrices in (3) is ensured assuming that every 
covariance matrix R(k) is positive definite; this has the significance that no measurement is 
exact.  

2.2 Time Invariant Kalman Filter  

For time invariant systems where the system transition matrix, the output matrix, and the noise 
covariance matrices are constant, the resulting Time Invariant Kalman filter (TIKF) takes the 
following form: 

Time Invariant Kalman Filter (TIKF) 

Kሺkሻ=P(k/k–1)HTൣHP൫k/k–1൯HT+R൧
-1

    (8) 

xሺk/kሻ=ൣI–KሺkሻH൧x(k/k–1)+K(k)z(k)    (9) 

Pሺk/kሻ=ൣI–KሺkሻH൧P(k/k–1)     (10) 

xሺk+1/kሻ=Fx(k/k)     (11) 

Pሺk+1/kሻ=Q+FPሺk/kሻFT     (12) 

for k=0, 1, … , with initial conditions x(0/–1)=x0, P(0/–1)=P0. 

2.3 Steady State Kalman Filter  

For time invariant systems, in [1] it is well known that if the signal process model is 
asymptotically stable, then there exist steady state values Pp and Pe of the prediction and 
estimation error covariance matrices, respectively. In this case, the resulting discrete time 
Steady State Kalman Filter (SSKF) filter takes the following form: 

Steady State Kalman Filter (SSKF) 

xሺk/kሻ=Ax(k–1/k–1)+Bz(k)    (13) 

for k= 1,2, … , with initial condition  

xሺ0/0ሻ=ൣI–Kሺ0ሻH൧x(0/–1)+K(0)z(0)     (14) 

where 

Kሺ0ሻ=P(0/–1)HTൣHP൫0/–1൯HT+R൧
-1

     (15) 

and 

x(0/–1)=x0, P(0/–1)=P0. 

 

The coefficients A=1–K and B=K are calculated off-line by first solving the corresponding 
discrete time Riccati equation [1]:  

P=Q+FPFT– FPHTൣHPHT+R൧
-1

HPFT     (16) 

computing the steady state positive value P of the prediction error variance and then calculating 
the steady state gain K:  

K=PHTൣHPHT+R൧
-1

     (17) 
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2.4 FIR Steady State Kalman Filter  

Finally, the Finite Impulse Response (FIR) implementation of the Steady State Kalman Filter is 
derived as in [25]. In fact, from (13) we can write: 

xሺM+1/M+1ሻ=AM+1x(0/0)+∑ AM-iBz(i+1)M
i=0  (18) 

In the case of asymptotically stable model, the computed powers of A can be expected to 
converge to zero [26].Owing to the computer accuracy, this property of A leads to the 
conclusion that there exists some M, such that:  AM≥ε and AM+i<ε, i=1,2,…, where ε is the 
convergence criterion. Setting AM+i=0, i=1,2,…, we get: 

xሺM+k/M+kሻ=∑ AM-iBz(i+k)M
i=0  (19) 

for k= 1,2, …  

Hence, assuming z(k)=0, k<0, we are able to derive the Finite Impulse Response (FIR) 
implementation of the Steady State Kalman Filter (FIRSSKF): 

FIR Steady State Kalman Filter (FIRSSKF) 

xሺk/kሻ=∑ Ciz(i+k-M)M
i=0  (20) 

for k= 1,2, … , with  

Ci=AM-iB, i=0,1,…,M (21) 

The method requires the knowledge of a subset of previous time measurements to calculate the 
estimation. The number of the previous time measurements required is the FIR length M, which 
is computed off-line. The FIRRSSKF coefficients are also computed off-line. The method can 
be used in order to derive estimation at a specific time without computing any previous 
estimation. 

3. KALMAN FILTERS IN CONNECTION 
The basic idea is to use Kalman filters in connection: the first Kalman filter uses actual 
measurements in order to provide estimation and the other Kalman filters use estimation of the 
previous Kalman filter in order to provide estimation. The estimation of the previous Kalman 
filter ismultiplied by the output matrix. Each Kalman filter uses the same parameters. In general 
we are able to use L Kalman filters, deriving Kalman Filters in connection (KFC) filtering: 

Kalman Filters in connection (KFC) 

Kalman Filter 1 
input z(k) 
output x1(k/k) 
 
Kalman Filter j, j=2,….L 
input H(k)xj-1(k/k) 
output xj(k/k) 

It is obvious that we are able to use Time Varying Kalman Filter, Time Invariant Kalman Filter, 
Steady State Kalman Filter or FIR Steady State Kalman Filter. It is obvious that final results are 
extracted after the implementation of L filters. Thus the calculation burden of connecting L 
Kalman filters equals L times the calculation burden of a single Kalman filter. 
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The connection of L Kalman filters is depicted in Figure 1. 

 

 

 

 
Figure 1. Kalman filters in connection 

 
In the case of the use of FIR Steady State Kalman Filter, all filters have the same coefficients 
and the same FIR lengthM = M୨ , j = 0,1,… ,M. Denoting the prediction of the j-th Kalman filter 
asx୨ሺk/kሻ, j = 1,2, …,L, we have: 

FIRSSKF 1 with FIR length M 
input z(k) 
output x1(k/k) 
 
FIRSSKF j, j=2,….L with FIR length M 
input Hxj-1(k/k) 
output xj(k/k) 
 

Then, we get: 

x1(k/k)=∑ Ciz(i+k–M)M
i=0       (22) 

xj(k/k)=∑ CiHxj-1(i+k–M/i+k–M)M
i=0 , j=2,…,L   (23) 

It is worth to notice that in the FIR Steady State Kalman Filters case, each filter can be 
described by its coefficients and hence by its finite impulse response h(k) derived by the 
FIRSSKF coefficients. Then we are able to write for each filter: 

x1(k/k)=h(k)*z(k)        (24) 

xj(k/k)=h(k)*Hxj-1(k/k),j=2,…,L      (25) 

where * denotes the linear convolution. 

This scheme is depicted in Figure 2. 

 

 

 

Fig. 2. FIR Steady State Kalman filters in connection 
 

Thus we derived an iterative algorithm for computing the output of each FIR Steady State 
Kalman Filter. 

The final output of the L-th filter can be obtained by: 

xL(k/k)=HL-1ሼh(k)*h(k)*…*h(k)ሽ*z(k/k)      (26) 
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4. SIMULATION RESULTS 

4.1 Example 1. Constant estimation 

This example is taken from [27]. Constant estimation can be implemented using Kalman filter. 
The Kalman filter parameters are: F=1, H=1, Q=0.00001, R=0.01. TIKFwas implemented with 
initial conditions x0=0.3, P0=0.01. The results for constant estimation, using TIKF are depicted 
in Figure3. The actual state (constant), and the Kalman filter estimations for L=1…4 are plotted 
for 100 time moments.  
The filters perform well and present similar discrepancies with respect to the actual state. They 
follow the general trend of the actual curve.The estimation becomes better when the number of 
Kalman filters increases. 
 
 

 

Figure3.Constant estimation using TIKF 

 
In order to measure of the efficiency of the prediction algorithms, the following metrics were 
computed: 

- the mean absolute estimation error of the Kalman Filter estimation with respect to the 
actual state  
- the percent absolute estimation error of the Kalman Filter estimation with respect to 
the actual state 
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Table 1 summarizes the mean absolute estimation error and the percent absolute estimation 
error for Example 1. From Table 1 it is clear that all algorithms provide estimations of high 
accuracy. It was found that:  

1. Estimation becomes better when the number of Kalman filters increases. 
2. The use of a small number of Kalman filters leads to negligible improvement in 
estimation.  

Table 1. Example 1. Absolute Mean Error And Percent Absolute Estimation Error 

Number 
 of filters 

Mean absolute 
estimation error 

% absolute 
estimation error 

1 0.0107 3.5446 
2 0.0047 1.5818 
3 0.0030 1.0070 
4 0.0027 0.8960 

 

4.2 Example 2. Electric load estimation. 

This example is taken from [13]. Electric load estimation can be implemented using Kalman 
filter. The Kalman filter parameters are: F=1, H=1, Q=0.235, R=655. TIKF was implemented 
with initial conditions x0=1000, P0=1. The results for electric load estimation, using TIKF are 
depicted in Figure 4. The actual state (electric load), and the Kalman filter estimations for 
L=1..4 are plotted for 100 time moments.  
The filters perform well and present similar discrepancies with respect to the actual state. They 
follow the general trend of the actual curve. The estimation becomes better when the number of 
Kalman filters increases. 

 

Figure4. Electric load estimation using TIKF 
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In order to measure of the efficiency of the prediction algorithms, the following metrics were 
computed: 

- the mean absolute estimation error of the Kalman Filter estimation with respect to the 
actual state  
- the percent absolute estimation error of the Kalman Filter estimation with respect to 
the actual state 

Table 2 summarizes the mean absolute estimation error and the percent absolute estimation 
error for Example 2. From Table 2 it is clear that all algorithms provide estimations of high 
accuracy. It was found that:  

1. Estimation becomes better when the number of Kalman filters increases. 
2. The use of a small number of Kalman filters leads to negligible improvement in 
estimation.  

Table 2. Example 2. Absolute Mean Error And Percent Absolute Estimation Error 

Number 
 of filters 

Mean absolute 
estimation error 

% absolute 
estimation error 

1 0.5095 0.0509 
2 0.4597 0.0460 
3 0.4300 0.0430 
4 0.4128 0.0413 

 
 

4.3 Example 3. Randomwalk estimation. 

This example is taken from [28]. Random walk estimation can be implemented using Kalman 
filter. The Kalman filter parameters are: F=1, H=1, Q=1, R=1. TIKF was implemented with 
initial conditions x0=10, P0=0.1. The Kalman filter estimations for L=1…20 were computed. 

In order to measure of the efficiency of the prediction algorithms, the following metrics were 
computed: 

- the mean absolute estimation error of the Kalman Filter estimation with respect to the 
actual state  
- the percent absolute estimation error of the Kalman Filter estimation with respect to 
the actual state 
 

Table 3 summarizes the mean absolute estimation error and the percent absolute estimation 
error for Example 3. From Table 3 it is clear that all algorithms provide estimations of high 
accuracy. It was found that:  

1. The use of two Kalman filters improves the estimation. 
2. The estimation may improve as the number of Kalman filters increases till L=10. 
Then the estimation is getting worse. 
3. The use of a small number of Kalman filters leads to negligible improvement in 
estimation.  
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Table 3. Example 3. Absolute Mean Error And Percent Absolute Estimation Error 

Number 
 of filters 

Mean absolute 
estimation error 

% absolute 
estimation error 

1 0.8245 8.5024 
2 0.7717     7.9646 
3 0.7527 7.7653 
4 0.7415 7.6453 
5 0.7332 7.5566 
6 0.7295 7.5149 
7 0.7286 7.5011 
8 0.7279 7.4900 
9 0.7276 7.4829 

10 0.7275 7.4794 
11 0.7285  7.4885 
12 0.7300 7.5026 
13 0.7309 7.5120     
14 0.7319 7.5221     
15 0.7327 7.5304     
16 0.7331 7.5352     
17 0.7332 7.5377 
18 0.7337 7.5432 
19 0.7338 7.5449 
20 0.7338 7.5457 

 

5. CONCLUSIONS 
Estimation plays a significant role in many fields of science. Kalman filter is the most well-
known estimation algorithm and has been widely and successfully used in various applications. 
The use of multiple Kalman filters in connection was proposed. The first Kalman filter uses 
actual measurements in order to provide estimations. The other Kalman filters use estimation of 
the previous Kalman filter in order to provide estimations.  

Time Varying, Time Invariant and Steady State Kalman Filters can be used; filters of the same 
type are connected. An FIR implementation of the Steady State Kalman Filters was derived. In 
this case, all filters have same FIR length and the same coefficients. 

Connecting Kalman filters, we derived estimation algorithms with the following drawbacks: 
1. Final estimations are extracted after the implementation of L filters.  
2. The complexity of the algorithm resulting by connecting L Kalman filters is the 
complexity of the Kalman filter multiplied by L. 
3. The estimation may improve as the number of Kalman filters increases, but may also 
get worse as the number of Kalman filters increases. 

Connecting Kalman filters, we derived estimation algorithms with the following advantages: 
1. It seems that the use of two Kalman filters always improves the estimation. 
2. The estimation may improve as the number of Kalman filters increases.  
3. The use of a small number of Kalman filters leads to negligible improvement in 
estimation.  

It is evident that the idea of using Kalman filters in connection, as proposed in this work, can be 
applied a) in other types of Kalman Filter, such as Extended Kalman Filter (EKF) and b) in 
other types of filters, such as and Information Filter and Lainiotis filters. Finally, future work 
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may deal with Kalman filters in connection aiming to derive prediction algorithms, expecting 
prediction improvement in comparison to the use of a single Kalman filter (which provides 
estimations as well as predictions). 
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