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Abstract.   
 
A family of pseudogamma functions of a complex variable s  was  introduced  Y.  Cheng,  C.  B.  
Pomerance,  G.  J.  Fox,  and  S.  W. Graham, in [18], for which, we give the computations in this 
article. 
 

1. INTRODUCTION 
 

The Riemann zeta function, denoted by ζ(s), is a meromorphic complex- valued 

function of the complex variable, customarily written as s = σ + it C    s uch that σ σ ∈  

∈R, t ∈ R, which is analytic everywhere except for s = 1, where it has a simple pole 
with the residue 1. For σ > 1, we have 

 

 
We observe that this, together with the analyticity properties of (s) which follow from its 
definition (1.5) with the explicit definition of W1, W2, K, and q in (1.10) and the fact that 
ξ(s) is an entire function prove the statementthat  B(s)  is  analytic  on  |s − u| =  R,  1  ≤ u  ≤ 
2.  Recalling  the upperbound of ξ(s) in (1.11) from Lemma 2 and noting that, by our choice 
of Ω,47.545       =      1 < 1.0132, we have completed the proof of Lemma 6.0.98695ω 
Ω0.98695 In order to devise a family of pseudogamma functions, we shall start 

with a strictly monotonic increasing sequence. We instead use s 1/2 in place of s = Reiφ 
from now on.Date: Drafted on July 21, 2018. Final version on May 9, 2020. The 2nd 
International Conference on Software Security, July 25–26, 2020, Bangalore, India, and 
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rj+1  for j  = 0, 1, . . .,    N   1, with values  to be determined later. Let R   R0 > 0 be 
designated   as above and take parameters 

 

 
In (1.3) below, we shall further restrict the V and W . For our approach in this article, 
we are going to resort to the ratio Nφ,V (s) , which is the ratio ofφ,Wtwo such 
normalized functions with W > V > R+ 7 on the circle |s− 1 | = R. 

22In conformity with (1.2), we shall let 

 
from  now on. 

 
 

Definition 1.  

We let V and W satisfy (1.2) and define N + 1dimensional vectors φ̇  and ṙ, for N  ∈ N, as 
 



 
International Journal of Information Technology (IJIT) Vol. 2, No. 2, April 2020

 

− 

2

for n = 1, 2, . . ., N 
 
as a pseudogamma function.
application in [9]; we need the following lemma concerning the 
 
 

(1.8) 

where 1 < X < 1 and ∇(s) is defined in (

Lemma 6. Let R ≥ R0 with R
are no zeros for the Riemann 

 

 
in  (1.10))  is analytic inside the  circle
small ε > 0, and satisfies the following upper bound(1.9)

< u ≤ 2. Then the function 1
2
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. . 

 

 1. We refer to the function (s) in F(R, φ̇, V, W

function. In this paper, we shall provide further estimates useful for the 
need the following lemma concerning the two related functions

 B(s) =  
ξ(s) 

, C(s) = 
∇(2 − X + s) 

, 
∇(s) ∇(s) 

 
 

) is defined in (1.5) above (or (2.3) as in [18]). 

with R0 defined at the end of Section 1. Suppose 
are no zeros for the Riemann ξ(s) on the circle .s − u. = R, with

in  (1.10))  is analytic inside the  circle  s u   = R + ε,  with  1 < u2and sufficiently 
small ε > 0, and satisfies the following upper bound(1.9)  

. Then the function B(s) in (1.8) (with our choces of constants
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W, ̇r; s) 

shall provide further estimates useful for the 
related functions 

. Suppose that there 
R, with 

 

and sufficiently 

with our choces of constants 
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2

B(s) Ð b0, 
with b0  =  1.0132, on the  circle  s u = R with ω = ξ(1/2) and Ω = 47.545/ξ(1/2). 

Remark. In our forthcoming applications in [9], we will take ω = ξ( 1 ). 
In [18], we have chosen that 
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